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Equation of State for Mixtures of Nonpolar Fluids: 
Prediction from Experimental Constants of the 
Components 
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We present a simple procedure by which an analytical equations of state for a 
mixture of normal fluids can be predicted from the constants Tr (critical 
temperature), Pc (critial pressure), and o) (Pitzer acentric factor) for each pure 
component. The equation covers the range from the dilute vapor or gas to the 
highly compressed liquid or supercritical fluid. 
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1. I N T R O D U C T I O N  

An accurate analytical equation of state for mixtures of nonpolar molecular 
fluids, based on statistical-mechanical perturbation theory, was recently 
proposed by Ihm et al. [1], who also showed how the equation could be 
used with varying amounts of input information. The maximum informa- 
tion, at present available only for the noble gases, consists of all the inter- 
molecular potentials plus one constant used to describe each pure dense 
fluid. In the absence of knowledge of the intermolecular potentials, an 
optimal amount of information consists of the second virial coefficients as 
functions of temperature, including the interaction coefficients, plus one 
constant for each pure dense fluid. The least information needed at present 
is the second virial coefficient of each pure component as a function of 
temperature, plus one constant for each pure dense fluid. 
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The purpose of this paper is to show how the Ihm-Song-Mason 
equation of state [1]  can be used with even less input information. In 
particular, knowledge of only three constants is sufficient to determine the 
p-v-T surface of a pure normal fluid with an accuracy of a few percent; the 
equation of state of the mixture can then be found straightforwardly, as 
shown by Ihm et al. [1 ]. The three constants are the critical temperature 
(T~), the critical pressure (Pc), and the Pitzer acentric factor (co). The latter 
constant can be obtained from a single measurement of the vapor pressure. 
These three constants are available for a large number of substances [2, 3 ]. 

Our essential corftribution here is to show how the temperature- 
dependent parameters of the statistical-mechanical equation of state can be 
predicted from the constants Tc, po, and co with little loss of accuracy. We 
first describe this procedure and then test it on 33 nonpolar substances 
having a variety of molecular structures. Finally, we summarize how the 
mixture equation of state is to be obtained from these results. 

2. P R O C E D U R E  

The equation of state that is the basis of this work is, for a single 
fluid [4] ,  

( B - e ) p  ep P - 1 + - - + - -  (1) 
pk T 1 + 6bp 1 - ~b; 

where p is the pressure, p is the number density, kT has its usual meaning, 
B(T) is the second virial coefficient, c~(T) and b(T) are two parameters that 
depend only on the molecular repulsive forces, and 3 and 2 are constants. 
The term 3bp is a small correction, and 6 can be taken equal to 0.222. The 
constant 2 is determined experimentally from a few high-density points, 
such as liquid densities. Because e(T) and b(T) are insensitive to the 
detailed shape of the intermolecular potential, they can be calculated if 
B(T) is known experimentally, by means of some effective mean-spherical 
potential [-4-6]. The results of such calculations are conveniently recorded 
as the dimensionless quantities ~/vB and b/vB, which are almost-universal 
functions of the dimensionless temperature T/TB. Here the scale factors TB 
and vB are the Boyle temperature, at which B--0 ,  and the Boyle volume, 
vB =- TB(dB/dT)rR. The critical constants T c and vc are not suitable as scale 
factors because analytical equations of state cannot be trusted to give an 
accurate description of the region around the critical point, which is known 
to be nonanalytic. 

The minimum input information needed to determine the equation of 
state thus consists of experimental values of B(T) and 2 for each pure 
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component. We now show how this input information can be obtained 
from the constants T~, Pc, and co. 

It is clear that B(T) plays a central role in the present equation of 
state. Not  only is it used directly, but it is also the source of the Boyle 
constants used to find c~(T) and b(T). There are several correlations by 
which B(T) can be estimated from the values of Tc, Pc, and co /-3, 7, 8]; we 
have used the expression 

(po/RTo)B = f(~ + cof(1)(T~) (2) 

where T~ = T/Tc and the group RTo/pc serves as a pseudocritical volume. 
The functions f(0) and f(l~ are 

0.330 0.1385 0.0121 0.000607 
f(~ = 0.1445 (3) 

Tr 

0.331 0.423 0.008 
f(~(Tr) = 0.0637 -~ (4) 

rr 

Not only does this correlation furnish values of B(T), but also it supplies 
good estimates of T B and vB, needed to find e(T) and b(T). The virtue of 
this result is that c~(T) and b(T) can be found from the critical constants 
without contaminating the entire p-v-T surface with the nonanalytic 
difficulties of the critical region. The values of TB and vB calculated numeri- 
cally from Eqs. (2)-(4) can be accurately represented by the expressions 

TB/T c = 2.6455 - 1.1941co (5) 

vB(pc/RTo) = 0.1646 + 0.1014co (6) 

Agreement with known experimental values of T B and v B is usually within 
a few percent, which is adequate because any errors will automatically be 
compensated by the choice of the constant 2, as described below. Once TB 
and vs are known, e(T) and b(T) can easily be calculated from available 
tables based on an effective (12, 6) potential model /-5] or from empirical 
equations fitted to those tables [9, 10]. 

To determine the value of the constant 2 at least one high-density 
p-v-T result is needed. For  consistency, to find 2 we have used the density 
of the saturated liquid at a temperature of Try0 .7 ,  which is the tem- 
perature at which the acentric factor co is usually determined. Once this is 
done, the entire volumetric behavior of the given fluid is established. 
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3 .  R E S U L T S  

We have chosen 33 normal fluids having a variety of structural types 
for testing the present prediction scheme. An important criterion for 
selection was the existence of a large amount of reliable p-v-T data. The 
fluids can be classified into the following six groups for convenience: 

Noble gases: Ne, Ar, Kr, Xe 
Diatomics: N2, O2, CO, C12 
Inorganic polyatomics: CO2, N20,  SO2, BF3, NF 3, CF4,  SF 6 
C1-C  4 alkanes: CH4,  C2H 6, C3H8,  n-C4Hlo 
C5-C 8 alkanes: n-CsH12, four hexanes, n-C7H16 , n-CsH18 
Other hydrocarbons: C2H4, propene, butene-1, propyne, benzene, 
toluene 

We exhibit the experimental data as graphs of G -1 vs bp, where G(bp) 
is 

G(bp)-+[Z-l+ l+6bp J (7) 

in which Z -  p/pkT is the compression factor. According to Eq. (1), this is 
a straight line of slope -2 .  The theoretical significance of G(bp) is that it 
is the effective average pair distribution function for equivalent hard bodies 
at contact [4, 6]. A critical sampling of typical results is shown in Fig. 1, 
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0.8 -- ~ o: NF 3 

~  

0.4 

0.2 

o.o . . . .  I . . . .  I . . . .  I , , ,  
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bp 

Fig. 1. Typical plots of G - l  vs bp, where G(bp) is given 
by Eq. (7). 
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representing the inorganic polyatomic gases. The results for the other five 
groups are similar, as shown by deviation plots. 

Deviation plots for the above six groups are shown in Fig. 2, where % 
Dev. = lO0(pcalc-Pexo)/Pe,,p. The deviations are mostly under 2% for the 
noble gases and gradually increase to mostly under 5 % as the molecular 
structure becomes more complex. This is not surprising, since the under- 
lying theory is based on a perturbation treatment of the statistical 
mechanics for fluids of hard convex bodies [4, 6]. 
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Fig. 2. Deviation plots for various systems: (a) noble 
gases, (b) diatomics, (c) inorganic polyatomics, (d) 
C1-C4 alkanes, (e) Cs-C8 alkanes, and (f) unsaturated 
and aromatic hydrocarbons. 
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Fig. 3. Correlation of the empirical constant 2~ with the 
acentric factor e). The straight line is given by Eq. (8). 

An impor tan t  result is that  the values of 2, which were determined 
from saturated liquid densities at about  0.7 Tc, correlate quite closely with 
the values of co, as shown in Fig. 3. The correlat ion is represented by the 
linear relation, 

2 = 0.4146 - 0.3164co (8) 

We believe that  mos t  of  the scatter shown in Fig. 3 arises f rom deviations 
in the calculated values of B(T), TB, and vB, which are reflected in 
compensat ing variations in 2. 

Thus the entire volumetric behavior  of a fluid can be calculated 
analytically f rom just  the values of  To, Pc, and co. 

4. M I X T U R E S  

There is no need to repeat the formulas for the mixture equat ion of 
state, since they are available [1] .  Here we only summarize how the 
foregoing results are to be used to generate the mixture results. The only 
mixture quantities needed are the temperature-dependent  pairwise inter- 
action parameters  Bij(T), so(T), and bij(T). For  these we use, in principle, 
effective mean-spherical  potentials, a l though these do not  actually need to 
enter explicitly into the calculations. The potential  well-depth parameter  e 
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is proportional to TB, and the well-position parameter r m is proportional 
to v 1/3. The simplest combining rules are thus 

T~ U = ( TBiTBj) '/2 (9) 

i)1/3 - -  1 [ , , 1 /3  -3- .1/3] (10) 
Bij  - -  "2 ~,~ B i  " V B j  I 

More accurate combining rules are available [11 ] and should be used if 
possible, but they require knowledge of the polarizabilities and dispersion 
coefficients of the pure substances in order to calculate corrections to 
Eqs. (9) and (10). 

Once TBi j and vso are known, the values of co(T) and bifiT) are 
calculated as for the pure components. 

To find Bo(T) we must know Tcij, (pc/RTc) o, and coo" A simple 
arithmetic mean seems to be adequate for coo [12], 

c o i j =  I ( c o i " ~  c o j )  (11) 

The value of T~u then follows from TBi/and coo according to Eq. (5), and 
the value of (pJRT~)q follows from v,u and o90. according to Eq. (6). Then 
Bij(T) follows from Eqs. (2)-(4) in the same as for the pure components. 
This completes the determination of the mixture equation of state. 

As as example, we have calculated the equation of state for 
CO2 + C2H6 mixtures according to the foregoing procedure. The results 
are essentially indistinguishable from those obtained by Ihm et al. [ 1 ]. 

5. CONCLUSIONS 

This work demonstrates that the entire p-v-T surface of a normal 
nonpolar fluid can be constructed with reasonable accuracy from just the 
three constants To, Pc, and co. The volumetric behavior of a mixture of any 
number of normal components can then be constructed according to the 
procedure of Ihm et al. [1 ], with only the use of combining rules for 
potential parameters. 
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